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ABSTRACT

The homogeneity of quantal dose responses between different treatments

can be tested by comparing a hypothesis-restricted logistic model with a model

of which the restricted model is a subset. The hypotheses considered here are

1) independent dose responses for each treatment, 2) a common median effective

dose for all treatments, 3) a common dispersion of responses around each

median effective dose, and 4) a common dose response for all treatments. The

ratio of their likelihoods, given the observed results, is transformed to have

an approximately chi-square distribution when the restricted model holds.

Because the justification of the chi-square distribution is based on

large-sample assumptions, the appropriateness to small-sample conditions is

verified in this paper by simulating a large number of random replicates of

experiments with small sample size (7 doses, 15 specimens per dose).
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INTRODUCTION

In bioassays, logistic and probit functions are commonly used to

describe quantal dose response and to estimate median concentrations of

toxicant that cause an effect (i.e., TLm, ED50, LD50); however, the

bioassayist must still decide whether dose response varies significantly

between two or more treatments. Much has been written on fitting

dose-response curves (Berkson 1955; Silverstone 1957; Finney 1971). Some

authors discuss general methods of discriminating between different models

(Chambers and Cox 1967; Prentice 1976), and Finney explains how to compute

confidence limits around the probit function. However, a method needs to be

pointed out to specifically test the homogeneity of dose responses of two or

more different treatments.

In this paper, I demonstrates tests of homogeneity that are based on

likelihood ratios. The logistic function is used to model the probability of

response as a function of concentration. Because the distribution of the test

statistic under the null hypothesis is determined from large-sample theory, I

also briefly examine the appropriateness of applying these tests to the typical

small-sample conditions of bioassay experiments. The distribution of the test

statistic, as computed from the large-sample theory, is compared with the

distribution of the test statistic observed in randomly replicated trials of

simulated small-sample experiments.

The appropriateness of the logistic model is assumed here. Proper

goodness of fit tests of this assumption, which are beyond the scope of this

paper, are proposed in Brown (1982) and Hosmer and Lemeshow (1980).
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LIKELIHOOD AND THE LOGISTIC MODEL

In dose-response experiments based upon quantal (all or nothing)

responses, the usual assumption is that the probability of obtaining r

responses from n individuals exposed to a particular dose can be described

by the binomial probability function:

where p is the probability of obtaining a response from a randomly sampled

individual at that dose.

The likelihood, L, of P, given the observed r, is defined to be

proportional to the probability of obtaining the results, r, given P (Edwards

1972); i.e.,

when the constant of proportionality equals 1.0.

The fundamental difference between probability and likelihood is that

with probability, r is variable and P is constant; and with likelihood, P is

variable and r is constant. In practice, likelihood would be used to compare

P's given a fixed r. The p that maximizes the likelihood L[P(r] can be

determined by applying the minimum-maximum theorems of calculus and solving

the equation
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The solution is P) = r/n, as might be expected intuitively. When examining a

independent groups, each group exposed to a different dose, the joint

likelihood of the a Pi's is:

which will be referred to as the observed model in this paper.

The P's are normally related to dose level, and the logistic equation is

often proposed to model the relation between pi and the dose  in whatever

scale is chosen: Pi where is the dose level of x at

which P = 0.50 (ED50), and B is proportional to dP/dx at ED50. Described in-

terms of the distribution of tolerance within the population, the median dose

would be y, and the dispersion around the median would be measured by B.

When Pj is constrained to some model, such as the logistic, the model

parameters replace the Pi's as the variables in the likelihood function. The

parameters 6 and y that maximize the likelihood                          I

obtained from solutions to the equations:

These do not have explicit solutions for 6 and y, as the observed model did

for p, but must be solved using iterative techniques such as the

Newton-Paphson (Edwards 1972), which will be explained later in this paper.
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When the dose-response experiment is conducted under b = 2 or more-

treatments, e.g., temperatures or toxicants, a general model can be assumed

initially that allows each treatment level to assume its own parameters (i.e.,

logistic model):its own

Thus, there is a full set of 2 x b parameters, designated by the vector-

Observations of each treatment are

independent of observations of other treatments. The joint likelihood of the

b experiments is the product of the likelihoods of the individual treatments:-

(3)

where P-ij is determined from Model 1 (0, used in Equation 3).-
Because none of the treatments share a common parameter, solving

maximization for each treatment. That is, proceed through the b treatments

one at a time and solve for B. and y. in each treatment as in the previous

discussion.

(2) and (3)

In add

simpler but

The maximized L(e,(rij) is, thus, obtained with in Equations

and will be denoted as L(6,1rij).

ition to the general logistic model for multitreatment exper

more restrictive models occur from reduction of the general

iments,

model.
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For example, a model can be hypothesized in which the treatments have a

common median dose, y. :

Model 2 is simpler than Model 1: Model 2 has one B parameter for each

treatment, as in Model 1, but only one y. for all the treatments. For Model

be the vector of b + 1 parameters.

Likelihood can then be obtained using Equation (4) in the

right-hand side of Equation (3). Solving

.
imate, e2, requ

the common y.

to obtain the maximum-likelihood est

considered simultaneously because of

Another model hypothesizes that

parameter, B.:

the treatments

ires that all treatments be

have a common dispersion
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There are only two parameters in the mode 1 e4, = (B., v.), and solving

for o4 of maximum likelihood simplifies to the

the observations pooled across treatments.

TESTS

single-treatment problem with

Bioassayists commonly must decide or speculate from their dose-response

results, r.., whether tolerance varies between treatments, species, toxicants,

etc. Comparing Models 1-4 by their maximum likelihood could help in making

these decisions. For example, in one test, to determine whether ED50's are

different, the maximum-likelihood values of Model 1, which allows for

independent logistic curves, could be compared with the maximum-likelihood

values of Model 2, which restricts the curves to a common ED50 (y).

The ratio of likelihoods, X = , tells us the number of times

the observed vector r.. is expected to occur after many repetitions of the

experiment if Model 2 (common y) is the underlying situation relative to the

number of times the observed vector r.. is expected to occur if Model 1

(independent y and B) is the underlying situation. In addition, G = -2 In X

is approximately chi-square distributed when Model 2 is true, so a hypothesis

test can be conducted (Wilks 1962). Thus, the probability of Type I error is

determined in the usual manner by choice of significance level (typically, 1%

or 5%), and Model 2 is accepted or rejected depending on whether it is less or

greater, respectively, than the appropriate critical value from a table of

chi-square values.
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In a second test, Model 4 (which assumes a common dose response) can

be compared to Model 1 to determine whether the EC50's and the dispersion

(as measured by B) around the EC50 are the same for each treatment.

If dispersion is assumed to be the same for all treatments, a third test

might be conceived to determine whether the EC50's are equal. Then, Model

4 can be compared with Model 3, which assumes the dispersions are equal.

These three tests will be referred to as Tests I, II, and III,

respectively. The tests, their null hypotheses, alternative hypotheses of

more likelihood, test statistics 5, and degrees of freedom are:

I. logistic with common y versus independent logistics,

I I . common logistic versus independent logistics

I I I . common logistic versus logistics with common B

METHODS

As stated, Equation (1) cannot be solved explicitly for B and y and must

be solved iteratively. It is equivalent, but simpler, to work with the

natural logarithm, so let Then, at

=
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B and y will be the maximum-likelihood estimates. Using Taylor's theorem for

functions of two variables, the first derivatives can be approximated:

where B' and y' are initial guesses of B and y. . Because the first and

second partial derivatives can be computed at the guessed values, a system

of two linear equations with two unknown values,

is obtained which in matrix form is

The two-parameter equation system (Equation 7) is used for Model 1

(solving for each treatment, one at a time) and in Model 4 (all observations

pooled as if in one treatment). Models 2 and 3 require a system of b + 1

parameters because these models contain a parameter (y. in Model 2, B. in



9

Model 3) common to all treatments. Thus, for Mode

In L(ezlrij) and find the solution where

1 2, let S( e 2 )  =

is solved iteratively as before. The solution to Model 3 is found in a similar

manner.

This iterative fitting technique for solving the maximum-likelihood

equations is referred to as the Newton-Raphson method (Edwards 1972) and

can be applied to each of the Models 1-4. The procedures are easily

programmed in BASIC computer language and run on a 32 K-byte

microcomputer with a matrix function ROM (read only memory) device. (A

program listing is available from the author.)

In practice, the test statistic, 5, is obtained by first calculating the

support function, 2, for each model, k,
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for each set of hypothesized parameters, ek, and noting that

is a constant for a given set of observed data, regardless

of 0, then G =

Data from a bioassay at Auke Bay Laboratory can be used to demonstrate

application of the tests. Kelp shrimp (Eualus suckleyi) were exposed for 48 h

to seven concentrations of toluene at two different temperatures (4" and 12°C)

(Table 1). _Models k = 1 to 4 are fit to the data, and the support functions,

S(e,), are given for each model (Fig. 1, Table 2). Computation of the support

function for Model 1 is demonstrated in Table 3. Restricting the curves to a

common y (Model 2) produces curves much different from curves produced by not

restricting y (Model 1). Restricting the curves to a common B (Model 3)

produces a curve indistinguishable from the curve of Model 1. The coincidence

of these two curves indicates temperature has little or no effect on

dispersion (as measured by B), but the difference between the Model 1 and

Model 2 curves shows that there is a difference in median lethal dose

estimated to be                                units. Test I (Table 4)

indicates that this difference is significant. Although Tests II and III are

unnecessary (because Test I is significant), they are shown to illustrate

their use. A test for common B'S (Model 3 versus Model 1) could also be done

to evaluate whether temperature has no effect on dispersion.
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Table 1 .--Bioassay of kelp shrimp, Eualus suckleyi, held 48 h in toluene. (From
data on file at the Natmarine Fisheries Service, Northwest and
Alaska Fisheries Center, Auke Bay, Alaska 99821.)
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Figure l.-- Results of bioassays with kelp shrimp, Eualus suckleyi, at 4"
and 12°C fitted to Model 1 (independent logistic response) and
Model 2 (logistic with common EC50). For clarity, Model 3
(logistic with common slope) and Model 4 (common logistic
response) are omitted. Models 1 and 3 are indistinguishable;
Model 4 is intermediate between the two lines of Model 2.
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Table 2 .--Parameter estimates and support functions of experimental data fit
to dose-response Models 1-4. Kelp shrimp were exposed to different
concentrations of toluene at different temperatures (see Table 1).



14



Table 4 .--Results of log-likelihood ratio tests of heterogeneity due to
temperature in a bioassay. Kelp shrimp were exposed to different
concentrations of toluene (see Table 1).
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DISTRIBUTION OF THE TEST STATISTIC

Because significance level and power of the tests are derived from theory

that assumes large sample sizes, it is appropriate to compare the theoretical

distribution with the results of replicated experiments of typical

small-sample size. When model parameters are known, the theoretical

distribution can be computed, and a small-sample experiment can be simulated.

Estimated from Large-Sample Theory

Theorem 13.8.1 in Wilks (1962) states that when the hypothesis ek, , a

subset of ek , is true, G = -2 In
Lb+ >

converges in probability to a random
Lbk)

variable having the chi-square distribution with p = k - k' degrees of freedom.- -

Thus, the probability of rejecting a true hypothesis (Type I error) is:

the integration of the chi-square distribution from the 100(1-a)% point.

When the hypothesis ek' iS not true, _G converges to the noncentral

chi-square distribution (Kendall and Stuart 1961), and the probability of

rejecting a false hypothesis is approximated by

an approximation of the noncentral chi-square distribution, x*(P,h) integrated

from the 100(1-a)% point of the central chi-square distribution, x,*(P).

Degrees of freedom equal p, and A is the noncentral parameter equal to
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where e P
is the vector of actual differences between the parameters of

interest, such as B. - 6J (j # j'); and epO is the vector of

parameter differences specified by the hypothesis. In most cases, epO is a

vector of zeros. The variance-covariance matrix of 13~ is represented by V
P

and is the negative inverse of the estimated variance-covariance matrix; V P
can be determined from the variance-covariances of B'S and y's (estimated

using the expected response values in the matrix of second-degree partial

derivatives).

For example, consider computing asymptotic power of tests for various

hypothetical conditions of                       where b = 2

treatments. For Test I                                                                   

where:

Figure 2 shows computed power for the tests at various AB and Ay for the

hypothetical condition 8.                                                 . When



Figure 2. --Asymptotic power of Tests I and II calculated for conditions where
there are b = 2 treatments, a = 7 doses (= 0, 5, 10, 15, 20, '25,
and 30), n = 16 replicates per dose-treatment, and Af3's and Ay's
are symmetrical around B. = 0.2197 and y. = 20.00. Points for Test
III when AB = 0 would be indistinguishable from points for Test I.
(Test I is logistic with common EC50 independent logistic response;

I
Test II, common logistic responselindependent logistic response;
and Test III, common logistic responsellogistic with common 6.)
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AB= 0, Test I has greater power in detecting Ay than Test II for intermediate

values; however, the power of both tests approach each other at the extremes

(at 4~ 2 0.40, power + 1.00; as AY -t 0, power + 0.05). As A6 increases, Test

II increases in power.

Simulated Small-Sample Experiments

Random replicates of dose-response experiments with small sample size

were simulated. The observed significance levels and power of these

experiments were compared with significance level and power obtained from the

large-sample theory. A quantal-response bioassay can be simulated by

drawing "i random numbers from a uniform (0,l) distribution for each
-

concentration Li. The simulated 1i would be the number of random numbers less- -
than or equal to the I$ prescribed for Xi by the assumed logistic function

(Buslenko et al. 1966):
-

Eight conditions of AB and Ay were chosen to compare simulated results

with the corresponding theoretical estimate of power. Each condition was

randomly replicated 250 times. Theoretical results were within the 95%

confidence interval of the comparable simulated estimate- in 15 of 16

comparisons (Table 5). The frequency distributions of the test statistics of

Tests I and II when the hypotheses are true (AB = 0, Ay = 0) were compared

with the theoretically appropriate chi-square distribution (Figs. 3 and 4).

Kolmogorov-Smirnov goodness-of-fit tests (Conover 1971) were not significant.

Thus, it appears that the 1 arge-sample theory adequately describes the

power of tests conducted under these conditions (!ij = 16, y. = 20, B. z-
0.22).
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Table 5. --Power comparisons of Tests I and II as obtained from asymptotic theory
versus simulated replications.
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Figure 3. --Cumulative relative frequency distribution of likelihood-ratio test
statistic for Test I (logistic with common ECSO(independent
logistic response) obtained from 250 randomly replicated
simulations (A@ = 0, Ay = 0) compared with the distribution
function of the chi-square distribution (1 d.f.).



Figure 4.--Cumulative relative frequency distribution of likelihood-ratio test
statistic for Test II' (common logistic responselindependent
logistic response) obtained dram 3SO randomly replicated
simulations (AB = 0, Ay = 0) compared with the distribution
function of the chi-square distribution (2 d.f.).
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